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ABSTRACT 
An experimental study was made to obtain heat transfer and air 

temperature data for a simple 3-leg serpentine test section that sim$ates 
a turbine blade internal cooling passage with trip strips and bleed holes. 
The objectives were to investigate the interaction of ribs and various 
bleed conditions on internal cooling and to gain a better understanding 
of bulk air temperature in an internal passage. Steady state heat transfer 
measurements were obtained using a transient technique with 
thermochromic liquid crystals. Trip strips were attached to one wall of 
the test section and were located either between or near the bleed holes. 
The bleed holes, used for film cooling, were metered to simulate the 
effect of external pressure on the turbine blade. Heat transfer enhance- 
ment was found to be greater for ribs near bleed holes compared to ribs 
between holes, and both configurations were affected slightly by bleed 
rates upstream. Air temperature measurements were taken at discreet 
locations along one leg of the model. Average bulk air temperatures were 
found to remain fairly constant along one leg of the model. 
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INTRODUCTION 
With current and future jet engine designs requiring higher pres- 

sure ratios and operating temperatures, it is important for the engine 
materials to withstand these extreme conditions. One method of keeping 
turbine blade temperatures below the critical metal temperature level is 
to cool the blade by routing cooling air from the compressor through 
turbulated serpentine passages in the blades. Small amounts of this cool- 
ant can then be bled into the external boundary layer flow through dis- 
crete holes on the surface of the blade, forming an insulating layer of 
cool air between the blade and the hot combustion gas. Predicting the 
metal temperatures correctly requires quality experimental data, 
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especially to validate turbomachinery CFD codes often used in the de- 
sign of engine components. 

Many experimental studies have considered the effects of Reynolds 
number and different rib geometries on the heat transfer of internal cool- 
ingchamtels, such asLau,etal. (1991), Han(1988),Chyu (1991),Zhang, 
et al. (1994), Wang (1996), and Taslim, et al. (1994). Recently there have 
been experimental studies on the combination of internal cooling with 
ribs and bleed. Tashm, et al. (1995) studied the effects of bleed holes on 
heat transfer on a trapezoidal internal cooling channel. Shen, et al. (1996) 
reported on heat transfer enhancement in a converging straight internal 
cooling channel with ribs and staggered bleed holes. Ekkad, et al. (1996) 
studied heat transfer in a turbulated two-pass channel with ribs between 
bleed holes. Rigby, et al. (1997), Stephens, et al. (1995), Bonhoff, et al. 
(1996), and McDonough, et al (1999) have used these experimental stud- 
ies to validate numerical predictions for complicated internal cooling 
geometries. However in a typical turbine blade passage, bleed holes may 
not be spaced equidistant between ribs. Also the varying pressure gradi- 
ent on the external surface of a blade may affect the flow bled from the 
internal cooling channel, resulting in nonuniform bleed flow rates. The 
present study focuses on varying bleed rates and rib placement relative 
to hole locations. 

This report provides experimental heat transfer data for the fist leg 
of a serpentine internal cooling channel with trip strips and bleed holes. 
A transient liquid crystal technique, as described by Hippensteele (1993), 
was used to determine the surface heat transfer coefficients. Ribs were 
placed at two locations relative to the bleed holes. One case had ribs 
spaced equidistant between the holes; the other case had ribs just up- 
stream of the holes. Different bleed conditions (uniform bleed flow rate, 
increasing bleed flow rate per hole, decreasing bleed flow rate per hole, 
no bleed) were run to examine the effects of variable bleed on internal 
cooling. Experimental data were also obtained on bulk air temperatures 
in the channel. 

APPARATUS 
The overall test facility is shown in Fig. 1. Room temperature air 

was drawn into the tunnel by a vacuum exhaust system. An elliptical 1-D 
aluminum bellmouth was attached to the clear acrylic plastic test sec- 
tion. An orifice at the exit of the test section measured the mass flow rate. 
Eight adjustable flow meters were attached to the bleed holes of the test 
section. The bleed air was collected into a manifold and flows through 
an orifice to determine the overall bleed mass flow rate. Tunnel flow 
started when a ball valve was opened downstream of the orifices. The 
model was enclosed in an oven covered with an automatic temperature- 
controlled heater blanket. Two “cool” HSI lamps and a color digital CCD 
camera were used to view the model. Video images were stored in com- 
puter memory at 1 frame/set using a commercial video frame grabber 
and were backed up on S-VHS videotape at 30 frames/set. A time-date 
generator was also used to record the time with the video data. 

The test section, made of 1.91 cm (0.75 in.) thick acrylic walls, had 
two partitions to create a serpentine channel, as shown in Fig. 2. The fist 
and second legs of the model were 6.67x6.67 cm (2.625x2.625 in.) cross- 
section; the third leg was 6.67x3.3 cm (2.625x 1.3 in.). Rounded trip strips, 
also made of acrylic, were attached to the lower surface of the model on 
all 3 legs, spaced 5.08 cm (2 in.) apart and oriented 90” to the airflow. 
The rib height-to-channel height ratio (e/D) was 0.076; the rib pitch-to- 
height ratio (P/e) was 10. Eight 0.38 cm (0.15 in.) diameter bleed holes, 
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spaced 5.08 cm (2 in.) apart, were drilled normal into the lower surface 
of the fist leg only. 

Liquid crystals, by virtue of their ability to change color with temp- 
erature, were used to determine surface temperature measurements. The 
lower surface of the model was sprayed with flat black lacquer, then 
with narrow-band microencapsulated chiral nematic liquid crystal paint 
for measuring the surface temperature to determine heat transfer. The 
video camera was perpendicular to the lower surface of the test section. 
Static pressures were measured on the lower surface of the model at the 
locations shown in Fig. 3(a). Open-ball thermocouple probes were placed 
in the airstream through the sidewall of the fist leg and through the 
upper surface at the turns and ends of the channels, as shown in 
Figs. 3(b) and (c). Thin-foil surface thermocouples were attached to the 
lower surface for calibrating the liquid crystals. Temperature and pres- 
sure data were recorded by a PC-based data acquisition system. 

PROCEDURE 
Once the mainstream and bleed flow regulators were set, the test 

model was heated in the oven to a uniform temperature, typically between 
54.4 and 65.6 “C (130 to 150 “F). After the model reached the desired 
temperature, the cameras were turned on, and the data acquisition sys- 
tem and VCR were started. Then the oven was opened up and the flow 
valve opened, initiating airflow which suddenly cooled the model with 
room temperature air. The resulting liquid crystal color patterns, show- 
ing oontinuous surface temperature, were recorded. In the present study, 
only data from the first leg of the test section were examined. The yellow 
color band of the liquid crystal was used for calculating the heat transfer 
coefficients and was calibrated to be 37.8 “C (100.1 OF). Video images 
were reduced using a video frame grabbing board, employing HSI color 
definition, and commercial software that extracts color and therefore 
surface temperature. The software also allowed manual digitization of 
the video images where high temperature gradient regions are difficult 
to resolve automatically. 

Assuming that lateral conduction is negligible compared to heat 
flow normal to the surface, surface heat transfer coefficients can be cal- 
culated using the 1-D transient conduction equation: 

8 = 1 - exp@)* erfc@), 

Q = (Ti -Tw)/(Ti -T,), p = h*(t/pck)o.s, 

Ti is the initial surface temperature, T, is the wall surface temperature, 
Tr is the bulk air recovery temperature, and t is the time from the start of 
the test. Note that this assumption is not actually valid near the bleed 
holes nor on the ribs. The local heat transfer coefficient, h, was calcu- 
lated at the location of the calibrated liquid crystal color band. This iso- 
therm also represents a uniform heat transfer coefficient when the bulk 
temperature is constant. Bulk temperature measurements in general 
showed little average increase along the passage, so the data were reduced 
using a single average temperature at the inlet. 

Two test model configurations were employed, one with ribs equi- 
distant between bleed holes, and one with ribs 0.5 lcm (0.2 in.) upstream 
of bleed holes. Each configuration was run for three flow rates (nominal 
ReDh = 3 1,000; 61,000; and 96,000) and four bleed cases (no bleed, uni- 
form bleed, increasing bleed, and decreasing bleed). Reynolds numbers 
were based on channel hydraulic diameter, which is equal to the length 



of the side of the square channel. Using the present hardware, bleed flow 
rates of 5 to 10 percent of the main flow could be attained. Table 1 shows 
the nominal bleed flow rate per hole as percentages of total bleed flow. 
Air temperature measurements were taken in the first leg at several cross- 
sectional stations as well as throughout the test section at discrete loca- 
tions, as shown in Fig. 3. 

An uncertainty analysis was performed following the method of 
Kline and McClintock (1953). Based on the following uncertainties: Ti = 
MS6 OC (*l “F), T,= so.28 “C (MO.5 “F), T, = MO.83 “C (k1.5 “F), and 
t = kO.3 set, the overall uncertainties in h for the multiple cases ranged 
from 8 to 13 percent. 

RESULTS AND DISCUSSION 
?he flow rate conditions referred to in the discussion below as Rel, 

Re2, and Re3 were run at nominal Reynolds numbers of 31000,61000, 
and 96000 respectively. When bleed was employed, the bleed flow rates 
were nominally 10,5, and 5 percent of the inlet mass flow for Rel, Re2, 
and Re3, respectively. A typical inlet velocity profile (station 1) is pre- 
sented in Fig. 4(a); inlet freestream turbulence intensity was nominally 
2 percent. 

Bulk air temDeratures and static surface oressures 
Airstream temperature measurements were taken for flow with uni- 

form and no bleed at various cross-sections in the first passage, as shown 
in Fig. 3(b). Raw temperature versus time data from inlet temperature 
measurements are shown in Fig. 4(b) for Re3 and uniform bleed along 
with a running average of the four temperatures. The standard deviation 
of these inlet temperatures was 0.78 “C (1.4 “F); the fluctuations decrease 
moving down the channel. To examine temperature change through the 
duct, the fluctuations were eliminated by taking a 10 set average at 
30 set after the start of the test. This is around the midpoint of typical 
liquid crystal data. Since room temperature and the initial heated air- 
stream temperature could vary for each test case, a nondimensional tem- 
perature ratio was used to normalize the temperature measurements. The 
normalized air temperatures were calculated as 

Normalized airstream temperatures at Re3 with uniform bleed are 
presented in Fig. 5 for four different heights from the floor of the model. 
Note that the data points at x = 58.4 cm (23 in.) are actually in the first 
turn region. As seen in the figures, the temperature variations in the 
spanwise direction are generally greater than the overall temperature 
increase or decrease in the streamwise direction. Similar effects were 
seen for Rel and Re2, with generally more temperature variation spanwise 
than streamwise, and spanwise variations becoming slightly greater with 
increasing Reynolds number. The average cross-sectional temperatures 
for all of the cases remained fairly constant through the channel. 

Spanwise air temperature averages throughout the test section (sta- 
tions shown in Fig. 3(a)) at mid-channel height and at Re3 are shown in 
Fig. 6. The average temperature remains fairly constant from the inlet to 
station 3, the midpoint of the first turn. There is a noticeable increase 
between the turn and the inlet to the second leg. The average temperature 
stays constant from station 4 through the midpoint of the second turn, 
station 6, then again increases. 

Static pressure measurements, shown in Fig. 7, were taken on the 
lower surface at the stations shown in Fig. 3(a). Static pressure changes 
little through the first passage and the first turn. The pressure then begins 
to decrease halfway down the second passage and decreases further as 
the flow speeds up through the narrower third passage. 

Heat transfer 
Heat transfer is presented as the ratio of Nusselt number, Nu = 

hD/k, over the Nusselt number for fully developed pipe flow, Nu, = 
O.* O.O23(Re,, )( Pr”.4). Data were not generally taken on the rib surfaces 

since the ribs were rounded and their small size violates the 1-D conduc- 
tion assumption. Nusselt number ratio distributions discussed below are 
for Rel . The trends for Re2 and Re3 are similar. 

Ribs between holes. Heat transfer distributions for ribs between 
bleed holes are shown in Fig. 8. With or without bleed, it can be seen that 
there is very low heat transfer just downstream of the ribs where separa- 
tion and reattachment of the flow occur. Figure 8(a) shows the no bleed 
case, in which the total bleed flow was shut off, so no flow exited through 
the bleed holes. As seen in the figure, no effect from the holes is evident. 

Having some type of bleed can greatly enhance surface heat trans- 
fer. The patterns produced by bleed with ribs between holes are backward- 
C-shaped compared to the oval shapes for the no bleed case. These patterns 
are also observed in Ekkad, et al. (1996) and Shen (1996). For the three 
cases with bleed, the effect of the bleed holes can readily be seen, with 
higher h immediately downstream of the hole. The boundary layer is 
essentially bled off, and heat transfer resistance is thereby reduced. For 
the uniform bleed case, there is much higher heat transfer near each hole 
as well as away from the hole near the ribs and walls, compared to the no 
bleed case. The heat transfer distributions appear to be periodic except in 
the region around hole 1 due to developing flow and around hole 8 due to 
the flow turning around the partition. 

For the metered bleed flow cases, higher Nusselt ratios are seen 
near the holes with higher bleed flow rates. The ramped increasing bleed 
results are shown in Fig. 8(c). It can be seen that upstream, where the bleed 
flow rates are less than those for the uniform bleed case, heat transfer is 
similar to no bleed. Downstream, where bleed rates are higher than uni- 
form bleed, heat transfer is similar to the uniform bleed case, but with 
slightly higher Nusselt ratios near and away from the hole. Near holes 4 
and 5 where bleed rates are similar to the uniform bleed rates, heat trans- 
fer is slightly better than without bleed but not as good as with uniform 
bleed. 

The ramped decreasing bleed results are shown in Fig. 8(d). 
Upstream, where bleed rates are higher than uniform bleed rates, heat 
transfer is higher near the hole and about the same as the uniform bleed 
case away from the hole. Heat transfer downstream is similar to the no 
bleed case. Heat transfer near holes 4 and 5 are slightly better than with- 
out bleed, but not as good as with uniform bleed. 

It can be seen from these cases that higher bleed rates yield higher 
heat transfer values near and away from the hole. By comparing the dis- 
tributions near holes 4 and 5, upstream bleed conditions seem to have a 
slight effect on heat transfer down the channel. Higher or lower bleed 
upstream reduces the heat transfer downstream away from the hole. 
Uniform bleed appears to give better heat transfer enhancement overall. 

Ribs near holes. Heat transfer distributions for ribs near bleed 
holes are shown in Fig. 9. Figure 9(a) shows that the no bleed case is 
similar to Fig. 8(a). Figures 9(b) to (d) show that heat transfer is greatly 
enhanced near the downstream edge of the ribs due to the bleeding of the 

NASA/TM-2000-209772 3 



stagnant separated flow behind the rib. The patterns produced by bleed 
are C-shaped, opposite that produced by the ribs-between-holes configu- 
ration. 

Other than the mirrored patterns, the heat transfer trends for each 
case are similar to those for ribs between holes. For uniform bleed, heat 
transfer distributions are periodic with higher Nusselt numbers near the 
bleed holes. Downstream of the hole, near the upstream edge of the rib, 
the effect of bleed is reduced. 

Heat transfer upstream for the increasing bleed case is similar to the 
no bleed case; heat transfer downstream is similar to the uniform bleed 
case, only with slightly better enhancement away from the hole. Near 
holes 4 and 5 where bleed rates are about the same as those with uniform 
bleed, Nusselt values away from the hole are similar to those for uniform 
bleed and higher near the hole. 

With decreasing bleed, heat transfer upstream is similar to the uni- 
form bleed case, with higher Nusselt values near and away from the hole. 
Heat transfer downstream is better than without bleed but not as good as 
with uniform bleed. Near holes 4 and 5, heat transfer is similar to uni- 
form bleed away from the hole, but is higher near the hole. 

By comparing the distributions near holes 4 and 5, it appears that 
the decreasing bleed case gives better heat transfer enhancement. When 
comparing to the ribs-between-holes configuration, better heat transfer 
enhancement is seen near and away from the hole due to the bleeding of 
the separated flow behind the rib, which decreases the heat transfer 
resistance at the surface. 

Reynolds number effect. Overall, heat transfer enhancement 
tends to decrease with increasing Reynolds number. As illustrated in Fig. 
10, increasing the Reynolds number for the uniform bleed case decreases 
the Nusselt number ratio only slightly. This is also true for all of the 
other cases not shown. For the cases with bleed, the heat transfer aug- 
mentation from increased mixing and boundary layer removal is less 
pronounced at higher Reynolds numbers. Generally for all cases with 
bleed, the patterns in the region around hole 1 appear to be squeezed 
toward the center of the channel as Reynolds number increases. 

Centerline comoarison. Centerline heat transfer coefficients for 
the region around hole 4, between the fourth and fiith ribs, are shown in 
Fig. 11 for both rib-between-hole and rib-near-hole cases. The highest 
heat transfer can be seen to occur on the top surface of the rib and down- 
stream of the hole; it should be noted that the data at the peaks were 
taken within a few seconds of the startup and thus have uncertainties 
substantially higher than the nominal 10 percent uncertainty reported for 
the more conditioned data. The lowest heat transfer occurs downstream 
of the rib and then gradually increases approaching the hole. Reynolds 
number does not appear to affect the heat transfer in this region between 
the rib and hole. 

CONCLUSION 
Bulk air temperature measurements taken in the first passage showed 

that in general, temperature variations in the spanwise direction were 
greater than the overall variation in the streamwise direction. The aver- 
age cross-sectional temperatures remained fairly constant along the chan- 
nel. Large temperature jumps occurred between the half-point around 
the first turn and the inlet to the second passage. 

Experimental heat transfer measurements showed that any amount 
of bleed would enhance surface heat transfer. Placement of ribs with 
respect to holes had a major effect on surface heat transfer distributions. 

Placing ribs near bleed holes greatly enhances the heat transfer by cool- 
ing more surface area and removing the separated flow near the down- 
stream edge of the rib. Different distribution patterns were also observed; 
the ribs-between-holes configuration produced backward-C-shaped pat- 
terns, while the ribs-near-holes configuration produced C-shaped patterns. 
By comparing the heat transfer distributions near the center of the chan- 
nel where the bleed rates were similar, heat transfer enhancement was 
found to be affected slightly by the bleed rates upstream. Higher or lower 
bleed flow upstream reduced the heat transfer downstream for the ribs- 
between-holes configuration, while heat transfer enhancement for the 
ribs-near-holes configuration increases slightly with higher bleed rates 
upstream. 
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TABLE l.-NOMINAL % OF TOTAL BLEED FLOW IN EACH HOLE 

Hole # Uniform Increasing Decreasing No 
bleed bleed bleed bleed 

1 Inlet 12.5 0 24.4 0 

2 12.5 4.3 21.0 0 

3 12.5 7.6 17.6 0 

4 12.5 10.9 14.3 0 

5 12.5 14.3 10.9 0 

6 12.5 17.6 7.6 0 

7 12.5 21.0 4.3 0 

8 End offirstpassage 12.5 24.4 0 0 
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Figure 1 .-Test Facility 
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Figure 3.-(a) Static pressure measurement stations. (b) Air 
temperature measurement stations. (c) Air temperature 
measurement locations in first passage (units are in cm). 
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uniform bleed at Re3. (a) z = .64 cm. (b) z = 1.91 cm. (c) z = 3.16 cm. (d) z = 4.45 cm. 
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Figure 6.-Airstream temperature throughout model, averaged spanwise across 
channel, Re3, no bleed, mid-channel height. 
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Figure 7.Test section static pressures. Uniform bleed. 
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Figure 8.4utface heat transfer, Nu/Nuo, for the case of ribs between holes. (a) Rel , no bleed. (b) Rel , 
uniform bleed. (c) Rel , increasing bleed. (d) Rel , decreasing bleed. 
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Figure 9.Curface heat transfer, Nu/Nuo, for the case of ribs near holes. (a) Rel , no bleed. (b) Rel , uniform bleed. 
(c) Rel , increasing bleed. (d) Rel , decreasing bleed. 
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Figure 1 O.-Surface heat transfer, Nu/Nuo. (a) Re2, uniform bleed, ribs between holes. (b) Re3, uniform bleed, 

ribs between holes. (c) Re2, uniform bleed, ribs near holes. (d) Re3, uniform bleed, ribs near holes. 
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Figure 11 .-Centerline heat transfer, uniform bleed. (a) Ribs between holes. (b) Ribs near holes. 
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